A Modified Stacking Ensemble Machine Learning Algorithm Using Genetic Algorithms
نویسنده
چکیده
Distributed data mining and ensemble learning are two methods that aim to address the issue of data scaling, which is required to process the large amount of data collected these days. Distributed data mining looks at how data that is distributed can be effectively mined without having to collect the data at one central location. Ensemble learning techniques aim to create a meta-classifier by combining several classifiers created on the same data and improve their performance. In this chapter, the authors use concepts from both of these fields to create a modified and improved version of the standard stacking ensemble learning technique by using a Genetic Algorithm (GA) for creating the meta-classifier. They test the GA-based stacking algorithm on ten data sets from the UCI Data Repository and show the improvement in performance over the individual learning algorithms as well as over the standard stacking algorithm.
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملModified stacking ensemble approach to detect network intrusion
Detecting intrusions in a network traffic has remained an issue for researchers over the years. Advances in the area of machine learning provide opportunities to researchers to detect network intrusion without using a signature database. We studied and analyzed the performance of a stacking technique, which is an ensemble method that is used to combine different classification models to create ...
متن کاملSemi-Stacking for Semi-supervised Sentiment Classification
In this paper, we address semi-supervised sentiment learning via semi-stacking, which integrates two or more semi-supervised learning algorithms from an ensemble learning perspective. Specifically, we apply metalearning to predict the unlabeled data given the outputs from the member algorithms and propose N-fold cross validation to guarantee a suitable size of the data for training the meta-cla...
متن کاملStacking machine learning classifiers to identify Higgs bosons at the LHC
Machine learning (ML) algorithms have been employed in the problem of classifying signal and background events with high accuracy in particle physics. In this paper, we compare the performance of a widespread ML technique, namely, stacked generalization, against the results of two state-of-art algorithms: (1) a deep neural network (DNN) in the task of discovering a new neutral Higgs boson and (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016